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ABSTRACT 

Live cell imaging is the study of living cells using microscope images and is used 

by biomedical researchers to provide a novel way to analyze biological functions through 

cell behavior and motion studies. Cell events are seen as morphological changes in image 

sequences, and their analysis has great potential for the study of normal/abnormal 

phenotypes and the effectiveness of drugs. While current quantitative cell analysis 

typically focuses on measuring whole populations of cells, we need to be able to 

recognize cell events at the single cell level, identify these events automatically, and 

analyze these events over time. For this reason, we developed and evaluated several 

novel automatic single cell event detection and analysis methods based on a detailed 

knowledge of the cell cycle and other cell event characteristics. The first method detects 

significant events within the temporal sequence using a machine learning method to use 

features derived from segmented cell images. We used a Neural Network (NN) algorithm 

to classify cell events to pre-defined categories. The second and third methods apply 

statistical and econometric techniques originally developed for time-series analysis of 

financial markets to facilitate the identification of cell entry into mitosis. We developed 

graph trend analysis and paired graph analysis methods from trend analysis and pairs 

trading to determine significant data points in cell feature data. The final method 

determines the position of cells in order to associate daughter cells with their parent cells 

after mitosis using Kalman filter techniques. By using the Kalman filter approach, we 

estimated future cell border centroid positions and successfully associated daughter cells 

with their parent cells after mitosis. In this study, the performance of these novel 

computer vision algorithms for automatic cell event detection and analysis were 

evaluated and verified by applying models to different image sequences from the Large 

Scale Digital Cell Analysis System (LSDCAS). The results show that the approaches 

developed can yield significant improvements over existing algorithms.  
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ABSTRACT 

Live cell imaging is the study of living cells using microscope images and is used 

by biomedical researchers to provide a novel way to analyze biological functions through 

cell behavior and motion studies. Cell events are seen as morphological changes in image 

sequences, and their analysis has great potential for the study of normal/abnormal 

phenotypes and the effectiveness of drugs. While current quantitative cell analysis 

typically focuses on measuring whole populations of cells, we need to be able to 

recognize cell events at the single cell level, identify these events automatically, and 

analyze these events over time. For this reason, we developed and evaluated several 

novel automatic single cell event detection and analysis methods based on a detailed 

knowledge of the cell cycle and other cell event characteristics. The first method detects 

significant events within the temporal sequence using a machine learning method to use 

features derived from segmented cell images. We used a Neural Network (NN) algorithm 

to classify cell events to pre-defined categories. The second and third methods apply 

statistical and econometric techniques originally developed for time-series analysis of 

financial markets to facilitate the identification of cell entry into mitosis. We developed 

graph trend analysis and paired graph analysis methods from trend analysis and pairs 

trading to determine significant data points in cell feature data. The final method 

determines the position of cells in order to associate daughter cells with their parent cells 

after mitosis using Kalman filter techniques. By using the Kalman filter approach, we 

estimated future cell border centroid positions and successfully associated daughter cells 

with their parent cells after mitosis. In this study, the performance of these novel 

computer vision algorithms for automatic cell event detection and analysis were 

evaluated and verified by applying models to different image sequences from the Large 

Scale Digital Cell Analysis System (LSDCAS). The results show that the approaches 

developed can yield significant improvements over existing algorithms. 
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CHAPTER 1 

BACKGROUND AND RESEARCH PURPOSE 

Live Cell Imaging Technology 

Live cell imaging is the study of living cells using images from imaging systems 

such as microscopes and it has become an important research technology in most cell 

biology laboratories as well as in neurobiology, pharmacology, and many other related 

biomedical research disciplines. Live cell imaging allows one to observe continuous cell 

fate changes, and to examine cell viability through cell behavior and motion studies. 

Digital image processing and computer vision applications for live cell imaging have 

greatly facilitated the study of cell dynamics.  

Since Schleiden and Schwann described an individual cell structure using a 

primitive light microscope in 18371, cell analysis using microscopes has become a basic 

research method for biologists. Although cell culture methods had developed in the 1920s 

to study eukaryotic cell division, research on cell division was restricted to fixed 

specimens until the late 1940s2,3 and researchers could only observe the morphology of 

cells and macromolecules including chromosomes from static images. The development 

of video technology in the early 1980s led to the addition of long-term time-lapse 

microscopy3–6, in which cells growing on the microscope stage are photographed at 

specific intervals over periods of several hours to a month1,7,8. With the improvement of 

long-term time-lapse microscopy technology, researchers could observe living cells. 

Further, automatic microscope stage controllers developed in the 1990s have also 

contributed to advance live cell imaging technology9. 

Time-lapse image sequences can reveal the dynamic behavior of cells including 

multiple cell division cycles better than other traditional biological methods4. Researchers 

can understand cells in culture, in particular, cell migration and division by the cell 

border, the position and behavior of granules, nucleus, and nucleolus of cells using image 
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analysis of these sequences. In addition, the length of a generation can be estimated by 

means of cell death and division. Mitotic onset can be observed by the nuclear envelope 

breakdown and cell round up10. Cell round up (RU) is a spherical shape change of a cell 

with decreased cell perimeter and increased mean intensity. In one study, a recognized 

model of human stem cell migration and proliferation was measured by the ability of 

growth factor to chemo-attract cells and/or simulate proliferation of cells. These data also 

can be used to analyze cell velocity and division9. 

Microscopes with a digital camera and environmental control system are basic 

components that must be present to acquire the image sequence. A motorized microscope 

with a digital camera in a live cell imaging system can select particular microscope fields 

and capture images at defined time intervals. Imaging cellular processes such as cell 

division involves the analysis of two daughter cells at a scale of about 10 µm, a range of 

time intervals from milliseconds to hundreds of minutes. A standard microscope 

equipped with 4X, 10X, and 20X objectives is adequate9. Researchers typically use a 

digital CCD camera to record live cell images. The most important feature of a live cell 

imaging system is its ability to maintain cells in normal physiological conditions on a 

microscope stage for the observation of particular cell events. This feature is 

accomplished with an environmental control system. To maintain cell survival for up to 

weeks of observation, physical parameters of the chamber such as temperature, CO2 and 

humidity must be maintained11. The cell culture environment varies depending on cell 

line and the purpose of the experiment. The stage incubator is constructed to fit on top of 

the microscope stage table. Commercial stage incubators are a closed dish for the active 

control of temperature and gas atmosphere. In addition, the environmental control system 

allows for the imaged plate to change positions according to the location change of the 

imaging objective as time passes.  



www.manaraa.com

 

 

3 

3 

The Large Scale Digital Cell Analysis System (LSDCAS) 

LSDCAS was invented at University of Iowa for the study of radiation-induced 

mitotic catastrophe8. It was later improved for the study of the dynamics and non-

equilibrium properties of cells using standard culture systems12. Traditional methods of 

studying cells involving chemical fixation are conventional and provide snapshots of cell 

morphology and architect13, but cannot reveal real-time cellular interactions caused by 

outside stimuli, abnormal cell division and other dynamic events. Furthermore, prior live 

cell imaging methods are very expensive and the analysis software is impossible to 

modify for specific goals. To overcome these limitations, LSDCAS was designed as a 

new research tool for live cell analysis within an open platform. LSDCAS image stream 

can be recorded from a few days to weeks which enables quantitative cell population 

studies. LSDCAS has been used in numerous studies such as cell motility, cell death, 

mitotic catastrophe, dendritic cell / tumor cell interactions, intracellular pro-oxidant 

detection using fluorescent probes, and wound healing12,14. 

Microscopes for live cell analysis systems can be divided into fluorescence and 

phase-contrast; LSDCAS has both microscopes. Fluorescence live cell imaging systems 

are especially important because they can reveal drug delivery kinetics and dynamics of 

intracellular structures such as kinetochores and microtubules15,16. But the systems using 

fluorescence have two major issues: photobleaching4,17,18 and phototoxicity17,19. 

Photobleaching, also called fading, occurs when a fluorophore becomes less fluorescent 

due to exposure to light; Phototoxicity refers to the reduction of the lifespan and 

liveliness of a cell due to the toxic side effects of the fluorescent dye. Phototoxicity 

cannot be eliminated, but can be reduced by using UV filters, neutral density filters, and 

longer excitation wavelengths12. This is the reason why we used phase-contrast image 

acquisition of LSDCAS to study cell events without any side effects from the fluorescent 

dye. 
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LSDCAS is an analysis system that includes hardware and software related to live 

cell imaging technology. The LSDCAS hardware includes microscopes, digital cameras, 

environmental control systems, storage arrays and servers20–22. Autofocus, cell 

tracking22,23, cell segmentation20–22, mitosis detection12,20, and motility analysis24 

programs are provided as software. LSDCAS can be divided into three components: data 

acquisition, data archiving and data analysis. The data acquisition component utilizes two 

microscopes with CCD digital cameras and stage incubators; An Olympus IX-70 inverted 

phase microscope (Olympus, Tokyo, Japan) equipped with a Plexiglas stage incubator 

(Olympus, Tokyo, Japan) and an Olympus IX-71 microscope (Olympus, Tokyo, Japan) 

with a LiveCell stage incubator (Pathology Devices, Inc., Westminster, USA). To acquire 

image sequences, a flask or multi-well dish is used on the microscope stage. To generate 

representative data for analyzing cell dynamics, image sequences are acquired from 

multiple locations on the culture dish. The microscopes with digital cameras and stage 

incubators are placed on air tables to minimize vibration artifacts. The data acquisition 

component has several features: 1) autofocus control for maintaining appropriate focus 

from focus changing due to thermal drift, 2) temperature controls for maintaining optimal 

temperature for each cell line, 3) electronic shutter controls for minimizing toxicity due to 

illumination, and 4) stage movement controls for maintaining appropriate imaged 

location. Autofocus, stage movement, and illumination shutter are controlled by Ludl 

MAC2000 controller (Ludl Corp., Hawthorne, NY, USA). 

The second component of LSDCAS, the data archiving system, stores zlib-

compressed 8-bit images in a custom file format. Captured images from the image 

acquisition component are transferred by campus network to the LSDCAS data center 

where experimental metadata is then stored in a relational database (PostgreSQL). 

LSDCAS users access the image data and experiment metadata using software written in 

Grails that is provided as several Tomcat web application. Initial early view of the 

experimental results can be seen as video clips which are automatically generated in 
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various video formats and presented to users via the web application. An automatic 

backup function is also provided in the data archiving component by Bacula which is an 

open source network backup software. In the data analysis component, cell division 

probability, generation length, and motility are determined from the image data by 

analysis programs. These programs are based on cell tracking and segmentation function 

from the sequence of images. Cell tracking is a method that can follow a cell from one 

image to the next. Level-set segmentation is used to identify cells and artifacts in an 

image sequence. All captured, segmented, and tracked cell images can be streamed at a 

steady rate or frame-by-frame, and forward or rewind stream is possible using casViewer; 

a graphical user interface (Fig. 1). CasViewer was designed to enable manual annotation 

of cell morphological changes, the events, by researchers and it stores the event 

information in eXtensible Markup Language (XML) files in a structured format that 

encapsulates the event structure. Figure 2 describes workflow of LSDCAS system with 

automatic event detection. 

There are a number of improvements that can be made to LSDCAS; development 

of various applications that expand quantitative cell analysis, increase primarily the 

accuracy of cell segmentation and tracking, and improve cell event detection which is the 

primary philosophy behind the LSDCAS. The development of automatic cell events 

detection especially can help to reduce the cost of manual analysis. 

Cell Cycle and Events Analysis in LSDCAS 

Cell cycle phases and predefined events 

The data analysis component in LSDCAS can detect both cells and artifacts in 

live cell image sequences using various analysis techniques, and identify cell events 

manually. Cell events such as cell division are seen as morphological changes in 

LSDCAS image sequences. The applications related to cell event analysis provide 

general methods that identify and analyze most adherent cell lines. 
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The cell cycle is the series of events leading to cell division and replication when 

eukaryotic cells reproduce. The cell cycle is complex and highly regulated, so the 

sequence of cell events corresponds to the completion of activities in each phase and the 

start of the next. It can be briefly divided in two periods: interphase and mitosis phase. 

Cells need to take in nutrients for growth before entering cell division. During interphase 

many biosynthetic cell activities occur to prepare for cell division, such as DNA and 

protein synthesis. Interphase proceeds in three stages, G1, S, and G2. During mitosis, cell 

growth stops and cellular energy is focused on the orderly division into two daughter 

cells. Mitosis has been broken down into several distinct phases, sequentially known as 

prophase, metaphase, anaphase, and telophase. In prophase, the nuclear envelope breaks 

down to allow the microtubules to reach the chromosomes, and chromosomes are 

captured by microtubules and separated in metaphase. Then the chromatid moves to 

opposite poles of the cell in anaphase and the nuclear envelopes of the daughter nuclei 

are formed in telophase. Cytokinesis directly follows mitosis in which cytoplasmic 

components are segregated to complete the formation of two identical daughter cells. The 

cell cycle phase in mitosis can be distinguished through DNA binding dyes and 

fluorescent protein (e.g. green fluorescent protein; GFP) using fluorescence microscope. 

But some sub-phases of mitosis and interphase can only be identified by cell 

morphological changes23. 

LSDCAS has twenty predefined cell event types related to morphological 

changes, for analysis of live cell image sequences (Table 1). These event types are related 

to cell cycle events and are visibly detectable. Additional events can be added to the 

analysis application framework, but a user must view and manually annotate the image 

sequences. Out of the twenty predefined events, the most significant morphological 

changes are round up (RU) and flatten out (FO). As mentioned earlier, mean intensity is 

increased and perimeter is decreased when cells enter mitosis at the RU state. Thus, the 

cell is in the FO state following the cell division that occurs in the RU state. If RU and 
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FO are defined, it is ease to detect events occurring after division. The LSDCAS analysis 

applications are used to describe the statistical characteristics of cell events and 

categorize the events. 

Segmented object features and statistical characteristics 

Every detected object in image sequences including cell events have ten features; 

timestamp, id, field number, frame number, mean intensity, perimeter, area, shape factor, 

x coordinate of centroid, and y coordinate of centroid. The features are measured by the 

analysis applications. Timestamp is the unix time stamp which provide a way to track 

time as a running total of seconds. Researchers can infer the time interval of the 

experiment from the timestamp. Id is a unique number for each cell and is assigned by 

tracking analysis. If two daughter cells are produced after a cell division, one daughter 

cell will keep the id of the parent cell and the LSDCAS system will assign a new number 

to the other daughter cell. Field and frame number refers to the microscope field number 

and an image number in ascending order, respectively. Mean intensity is calculated from 

the brightness of the pixels within an object; cell or artifact. It is depends on the 

resolution of the microscope and image brightness of each image. The perimeter of the 

cell is computed by a recursive distance calculation between two adjacent pixels, and 

area is calculated based on perimeter value. Shape factor is defined as (4.0 * Pi * area) / 

(perimeter * perimeter) and the value ranges from 0.0 to 1.0 (perfect circular form). 

Generally, RU cells have a shape factor of about 0.87. Centroid coordinates are obtained 

for the cell border using the distance data calculated when the perimeter is determined. 

These shape-based features can be used to distinguish between cells because they contain 

the majority of the information about cell morphological changes. 

Based on these features of the cell border of the image, motility can be computed. 

Motility can be calculated by fitting distance curves to estimate cell speed in the 

LSDCAS image sequences. We can understand cancer metastasis, the shaping of organs 
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and tissues of an embryo, wound healing, and the generation of new blood vessels24 by 

cell motility. Furthermore improving cell event detection using cell motility is possible 

because cell motility is related to cell viability. Cell motility information is stored as a 

text file and includes cell trajectory analyses, mean cell speed (microns/h), standard 

deviation of cell speed, and 95% confidence intervals on the mean. Mean cell speed time 

series and motility histograms are shown in Figure 3. 

Manual cell event analysis 

To obtain manually detected cell event data, a user assigns one of the predefined 

events to particular cells in an image sequence using CasViewer. As shown in Figure 4B, 

the events are organized in a dialog box. User can also manually move to the next event 

in the cell image sequence (Fig. 4A). All of the events have a field, event name, id for 

cell event tree, frame number, and parent id information and it is stored in XML file 

format. More than one event tree file can be stored from an image stream. These 

manually detected events also can be modeled as temporal sequences using a graph-based 

representation as a directed acyclic graph (DAG)25. A DAG is a collection of vertices and 

directed edges with each edge connecting two vertices (Fig. 5A). It is used to depict cell 

events observed in LSDCAS image sequences. Every sequence also known as a cell 

event tree, has a root (i.e. Identify Cell; IC), then an event such as an RU, ND, or FO is 

connected as a child event and so on as shown in Figure 5B. A DAG is used in various 

fields such as Gene Ontology graph26, structural RNA analysis27, phylogenetic trees25, 

and neural network model28. Researchers can verify the events as a DAG format.  

Cell generation time distributions can be calculated using the cell event data 

obtained using casViewer. For cell growth analysis, the entry of mitosis (RU) and the exit 

from mitosis (FO) are determined using the LSDCAS event analysis main window. The 

user indicates these events, and the analysis application calculates the time between the 

RU and FO of the cells that bracket the generation time, mitosis. Then the mean cell 
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generation time is calculated using histogram analysis (see Figure 6). Mean cell 

generation time can be used to demonstrate the differences of the growth rate among cell 

lines and conditions.  

Summary and Research Purpose 

Live cell imaging technology has become a widely accessible research tool for 

cell event analysis. Digital image processing and computer vision applications for live 

cell imaging analysis have greatly facilitated the study of cell dynamics and LSDCAS is 

designed to understand and determine cell motion studies using naïve cells. Detecting and 

analyzing cell motility and division is essential for live cell studies and automated 

analysis applications are crucial for research productiveness.  

The goal of this research is to develop novel methodologies of automatic cell 

event detection and recognition at the single cell level based on a detailed knowledge of 

the cell cycle and other cell event characteristics. To achieve this goal, we applied our 

developed approaches to different image sequences to help show how our novel 

methodologies can yield significant improvements over existing models. We used a 

neural network model of machine learning methods to determine significant cell events, 

then applied our novel algorithms to identify cell division. The first novel method detects 

significant events within the temporal sequence of mitosis using graph trend analysis. 

The second method applies paired graph analysis to detect cell entry into mitosis. The 

final method determines the position of cells in order to associate daughter cells to their 

parent cell after mitosis. These new algorithms use the following concepts: graph based 

data analysis, time-series data analysis, and applied Kalman filter.  

Our methods to detect cell division in image sequences involve the detection of 

feature changes associated with cell division. Cell division causes the cell to round up 

(RU) and this phase can be identified by a bright circular shape in phase-contrast 

microscope images. Further, the cell features (i.e. timestamp, id, field number, frame 
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number, mean intensity, perimeter, area, shape factor, x coordinate of centroid, and y 

coordinate of centroid) can be used to model feature trends associated with cell division. 

Especially, the four features related to the cell morphology (i.e. mean intensity, 

perimeter, area, and shape factor) can be used to identify events in mitosis.  

Significant cell events determination using machine 

learning method 

Machine learning is an effective method of solving problems that involve the 

determination of behavior based on empirical data or past experience. The task of 

machine learning is to learn a mapping from input to output by optimizing parameters. 

The three goals of machine learning are: 1) to learn knowledge about input and output 

relations; 2) to make proper decisions based upon these input-output relationships; and 3) 

to improve the performance based on input data29–31. A training set is selected of a typical 

morphological shape of a specific cell event in the LSDCAS image streams to determine 

characteristics of each training cell event. After the training process, acquired 

characteristics of specific cell events are used to identify test sets which do not contain 

any data used for training. The results are presented and the performance of the machine 

learning method for LSDCAS dataset is demonstrated in Chapter 2. 

Cell entry into mitosis detection using time-series data 

analysis methods 

Time-series data consists of numerical values over a time interval. The time-series 

data analysis is a widely used method in economics to forecast markets and make profits. 

In time-series data, the independent variable (x) is discrete time and the dependent 

variable (y) takes values dependent on time. The data in LSDCAS can be shown as time 

series by cell id. Each cell has ten different time-series data from ten features. These are 

timestamp, id, field number, frame number, mean intensity, perimeter, area, shape factor, 

x coordinate of centroid, and y coordinate of centroid. Each time-series data has frame 
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information as over time points {x} and measurements over the previous ten variables as 

the y values. We analyzed multivariate time-series data from each cell to detect outliers 

and/or uncommon trends in an attempt to identify significant cell events. In order to 

successfully distinguish between phenomena of interest and stabilized data, different 

kinds of information are normally required. For valid detection in this research, we used 

the concepts of trend analysis and pairs trading. Trend analysis is a method that refers to 

the concept of collecting information and attempting to spot a pattern, or trend, in the 

information. Graph trend analysis, derived from trend analysis, uses four out of the ten 

measured features (the mean intensity, perimeter, area and shape factor) to find outliers. 

Pairs trading, a popular time-series data analyses methods in econometrics, was also used 

to develop a novel paired graph analysis method. This method makes pairs from four 

features to find significant cell events. We have implemented these time-series data 

analysis methods for the LSDCAS. The results and the performance of graph trend 

analysis and paired graph analysis are presented in Chapters 3 and 4, respectively. 

Associating daughter cells with their parent cell after 

mitosis using applied Kalman filter 

Kalman filtering is an algorithm which estimates the state of a linear system by 

mathematical recursive calculation. It enables the prediction of the next state of a system 

given its prior states. In order to detect accurate histories of individual cell fates, we need 

to link daughter cells to their corresponding parent cells. In this research, we used a 

Kalman filter as a suitable cell centroid estimator and estimated prior cell position given 

the current daughter cell locations. The first step of the reverse Kalman filter for 

associating daughter cells to their parent cell is to estimate next position of the cell 

centroid by adding a linear weighted average of x and y coordinates. Then we applied 

Kalman filter in the reverse direction (from the last to the first frame of the image 

sequence) to predict a parent cell from daughter cells. If the estimated centroids of the 
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daughter cells are in the same candidate parent cell, we associate the daughter cells to that 

potential parent cell. To find proper normal cell division, we used paired graph analysis 

to determine which cells will divide (i.e. RU cells) and used reverse Kalman filter to 

associate the parent cells to their daughter cells. The results of the applied Kalman filter 

are presented in Chapter 5. 
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Figure 1. casViewer. Main window of casViewer shows segmented cell with id, event 
number, and designation. Cells with green border represent an actual cell; 
objects with a red border are partial cells or alter artifacts which can then be 
ignored in subsequent analysis. 
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Figure 2. A workflow of LSDCAS. First, live cell image stream data can be collected by 
data acquisition component. Then, single images can be translated to mpeg 
file and stored in data archiving component. Lastly, user can use analysis 
functions using cell tracking and segmentation. 
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Table 1. Predefined events in LSDCAS event analysis using casViewer. 

Event name Abbreviation Description 

Normal division ND A parent cell divides into two daughter cells 

Multipolar division MD 

When a parent cell divides, the spindle has three or more poles 

and results in the formation of a corresponding number of 

daughter cells 

Failed normal division FND 
A parent cell try to divide into two daughter cells,  

but only one daughter cell produces 

Failed multipolar division FMD 
After cell division, daughter cells produces less than a number of 

the poles 

Sister cell fusion SCF Two daughter cells are fused 

Non sister cell fusion NSCF Two cells are not daughter cells are fused 

Death at division DD Cell death in mitosis 

Death at telophases DT Cell death after cell division 

Interphase death ID Cell death in interphase (in the absence of any mitotic events) 

Apoptosis AP Cell death during interphase (programmed cell death) 

Round up RU Cell division 

Flatten out – normal FO Cell exit from mitosis 

Off screen OS Cell moves over the recording window 

End of Movie EOM End of live cell image streams 

Identify cell IC Start point cell for event analysis 

Flatten out - Bi-nucleated FOBN Cell with two nuclei exit from mitosis 

Flatten out - Multi-

nucleated 
FOMN Cell with more than two nuclei exit from mitosis 

Nuclear fusion NF Two or more nuclei are fused 

Identify cell - Bi-nucleated ICBN Start point cell with two nuclei for event analysis 

Identify cell - Multi-

nucleated 
ICMN Start point cell with more than two nuclei for event analysis 

 
Note: Full name of event, the abbreviated name of event, and a brief description are 
provided. 
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Figure 3. Mean cell speed and motility histogram of E5701 Sample 0. A. The mean 
cell speed is presented at each time point and increased until about 30 hours. 
Then, the mean cell speed is maintained at 15 to 17 microns/h, B. Most cells 
move at about 16 µm/h. 
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Figure 4. Manual event annotation using casViewer. A. By using right button of 
mouse, a researcher can select among predefined events list. Event tree id 
number is assigned automatically, B. The event analysis dialog box using cell 
manually-identified event and indicates their logical relationship through the 
tree-structure shown. 
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Figure 5. A directed acyclic graph (DAG). A. A simple example of DAG. Closed path 
DAG has no start and end vertex; the graph start and end at the same vertex 
and follow edges only in their forward direction. Unlike closed path DAG, 
open path DAG has a root and a forward direction, B. An example of cell 
event graph with two rounds of cell division from one cell. The tree begins 
with a identify cell (IC), then round up (RU), normal division (ND), and 
flatten out (FO) are follow. Cell death in interphase (ID) can be added if a cell 
dies after FO. If a cell dies when in RU state, the event is dead at division 
(DD).  
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Figure 6. Cell generation time histogram. 214 SKOV 3 cells are used to analyze the 
mean cell generation time. 
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CHAPTER 2 

MACHINE-BASED CELL EVENTS DETERMINATION  

Machine Learning Approaches: Unsupervised and 

Supervised 

Machine learning is a scientific discipline that allows computers to distinguish 

between dissimilar objects without being explicitly programmed. It provides a cost-

effective approach to automated knowledge acquisition in quantitative datasets. Machine 

learning algorithms can be categorized into two broad areas: unsupervised and supervised 

learning algorithms (Fig. 7). The difference is drawn from how the general inductive 

process (also called a learner) classifies data. The aim of unsupervised learning is to find 

regularities in input30. Such an algorithm should be able to discover classes based on the 

clustering of objects in a dataset32. The data have no target class which is predefined class 

determined by user. Thus, the input data for unsupervised learning is unlabeled and is 

used as a random variable set30,33. The self-organizing map (SOM) and adaptive 

resonance theory (ART) are well-known models in unsupervised learning. In contrast, 

supervised learning produces an inferred function, a classifier15,32, from labeled examples 

in training data. A classifier should be able to define patterns in the data that relate data 

attributes with a target class attribute and predict a desirable output class among pre-

categorized classes. These patterns are utilized to predict the values of the target attribute 

in future data instances. Hence, a classifier should build a generalized function from a 

training data set. Bayesian classification, support vector machine (SVM), decision trees, 

and neural networks (NN) are commonly used algorithms for supervised learning. 

Machine Learning Methods in Live Cell Imaging 

In the literature, cell events are manually labeled and classified by supervised 

learning. Two popular analysis methods are SVM and NN. SVM is a linear maximum 

margin method that assigns data as points in the feature space, and then separates 



www.manaraa.com

 

 

21 

21 

categories by a maximum margin hyperplane. The goal of SVM is to find the optimum 

hyperplane to separate data into two categories6,28,30,34. Figure 8 illustrates a simple SVM 

classification. The geometry of the hyperplane depends on a kernel function35. This 

kernel function is possibly the best-known element of SVM. Kernel functions are used 

for the transformation of feature space36 because the decision boundaries of most data 

sets are nonlinear and difficult to represent in closed form. When SVM is applied to 

image analysis, the training process is typically faster than that of other classifiers such as 

NN and AdaBoost6,33. However, heavy parameter tuning is required37 and the complexity 

of SVM is independent of the dimension of the feature space34. 

NN, also called perceptron, is a mathematical model that represents the 

characteristics of artificially interconnected neurons. These artificial neurons, which are 

related to biological neurons, use simple learning processes. Although various NN 

models are used for image analysis, most of them utilize three layers: the input, hidden 

and output layers. Figure 9 shows the most commonly used feed-forward neural network 

structure. A feed-forward network, as shown in Figure 9, is a multilayer weighted and 

directed graph which consists of inputs (x1 and x2), output (y), nodes (n1, n2,…,n5) and 

directed edges (w31, w41,…,w54). Nodes are artificial neurons and directed edges are 

connections among input, hidden and output nodes28–30,38–40. When a network performs a 

classification task, a learning process updates a network by changing the weights for the 

best performance. The popularity of neural network models is increasing because of low 

dependency on specific data33,41 and three advantages: the ease of optimization, the 

accuracy of predictive inference, and the ease of knowledge dissemination42. The 

definition of knowledge dissemination is a process to accelerate new hypotheses based on 

new observations and prior knowledge43. 
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Cell Event Determination in LSDCAS Image Stream using 

Neural Network 

Classification by supervised learning can be used to determine future cell events 

based on attributes of predefined cell events. The first step of cell event classification 

would be to determine the types of training examples that would be must useful. We 

chose to look at single cell events, mitosis related events, and specific series of cell 

events. The second step would be to gather a training set that should contain 

representative features and attributes of these events. It is important to note that the 

number of features should not be too large or too small. Too few features and rates of 

false classification would increase to too many and we are faced with the curse of 

dimensionality33,38,44. The curse of dimensionality is a phenomenon which states 

computing cost increases exponentially as the number of state variables increases. The 

next step would be to choose an algorithm that is similar to the learned function and to 

apply a test data set. According to the procedure of supervised machine learning, 

parameters of a learning algorithm should be optimized by a validation set or adjusted by 

cross-validation29,30. The last step is to evaluate the performance of the algorithm. 

Performance can be measured by the accuracy in predicting a data set that was not used 

in training32. 

Since the neural network approach is effective in classifying objects in general, 

we used it to determine RU and FO cell events. A learner automatically builds a classifier 

for RU and FO categories by observing the characteristics of a set of cell events that were 

manually classified. In our studies, RU cells are predicted to be circular shaped cells that 

are lighter than other cell events and FO cells are determined to be number eight shape 

cells that are bigger than other cell events. Also four out of ten measured features (i.e. 

mean intensity, area, perimeter and shape factor) are valid in distinguishing RU and FO 

cells from the other cells. 
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Training set 

Manually identified cell events are collected as a training set for the neural 

network approach. Data for training were acquired from field 0 of E5701 and E5689 

experiments. We chose to focus on the RU and FO cell events. We manually annotated 

cell events that represented characteristic RU and FO states. A total of 34 RU events and 

29 FO events were manually annotated using casViewer. E5701 and E5689 experiments 

are recorded with MDA-MB-231 cells, a human breast cancer cell line.  

Test set 

Field 1 from E5701 and E5689 experiments were used as test sets. The same four 

features extracted in the training set were also extracted in the tests set. We applied the 

neural network model made by the training set to test sets containing 4489 and 5964 cell 

events from E5689 and E5701, respectively.  

Analyze using Weka 

Weka is an open source collection of machine learning algorithms and it is 

implemented in Java. These algorithms can be used solving various data mining 

problems45. We used Weka for applying classification and feature selection methods to 

our training and test data set. A multi-perceptron classifier in Weka was applied to 

construct a three layer, one hidden layer included, neural network classifier. Default 

parameter values were utilized to show the result. The ten features of the cell event data 

were transformed to csv (Comma-separated values) file which is the default import 

format for Weka. Then we selected four features and applied the multi-perceptron 

classifier under functions. The training results can be stored as a model file for future 

classification. 
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Results 

Manually annotated events are used as a training data set for a neural network and 

a test data set is used to compare against the predicted cell events for our novel methods. 

Typically 10-fold cross-validation was used to validate the results of the test sets. This 

means that the whole data set is divided into 10 parts. 10% of test set is used as an actual 

test set and the remaining 9 parts are the learning set for the model. But we collected a 

specific training set from field 0 of E5689 and E5701, and applied each model to field 1 

of E5689 and E5701, respectively. Tables 2 and 3 show the true positive, false positive, 

true negative, and false negative cell events determined by the classifier and accuracies 

for the default setting of Weka. We selected 28 and 31 RU cells from E5701 and E5689 

to build a training set, respectively. Then we applied the classifier trained from each 

experiment to test sets: E5701 and E5689 field 0. The E5701 test set has a total number 

of 5964 cell events and E5689 test set has a total number of 4489 cell events. Neural 

network successfully detected about 97% of the RU cell with 96.55% of sensitivity and 

59.59% of specificity using E5701. In addition, about 94% of the RU cells are detected 

with 93.94% of sensitivity and 78.41% specificity using E5689. The results indicate 

effective classification.  

Discussion 

The neural network result presented high true positive rate; about 97% for E5701 

and 94% for E5689. False positive rates, however, were also high which can potentially 

degrade the performance of detecting true positives. In addition, the neural network is not 

equipped to handle a sequence of events like the RU-FO progression. This is because cell 

events are determined only by the four features specified. Also the neural network cannot 

consider the previous state of an event when they apply their classification standard. For 

this reason, we developed novel methods to be used to detect the cell events. A method to 
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detect a cell’s entrance and exit from mitosis is developed from a time-series data 

analysis method and is described in Chapter 3. 
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Figure 7. Supervised and unsupervised machine learning. A. Supervised learning 
predict a desirable output class among pre-categorized classes. The result 
group already defined by user, and the input data will categorize to the 
predefined group, B. Unsupervised learning divides input data into groups just 
with similarities. The aim of unsupervised learning is to find the regularities in 
the input. 
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Figure 8. A simple SVM classification. A margin is defined as the sum of the distances 
of the closest points of the two classes. Samples on the margin are called 
support vectors and the solid line in the middle of margin is the hyperplane. 
The vector w is a normal vector perpendicular to the hyperplane46. 

 
  



www.manaraa.com

 

 

28 

28 

 

Figure 9. A simple structure of two-layer feed-forward neural network. A user can 
provide inputs (x1 and x2) and the system computes output (y) from the value 
of inputs, nodes (n1, n2, …, n5) and directed edges (w31, w41, …, w54)28. 
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Table 2. Neural Network results using E5701. 

  Detected by NN 

  RU Not RU 

Manually detected 
RU 28 (TP) 1 (FN) 

Not RU 2399 (FP) 3536 (TN) 

Note: Each training set has RU and FO events, and only RU cells are determined by NN 
classifier. A total number of manually detected RU cells are 29 and the accuracy of 
NN using E5701 is 59.76%. Also, the sensitivity is 96.55% and the specificity is 
59.59%.  
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Table 3. Neural network results using E5689. 

  Detected by NN 

  RU Not RU 

Manually detected 
RU 31 (TP) 2 (FN) 

Not RU 962 (FP) 3494 (TN) 

Note: Each training set has RU and FO events, and only RU cells are determined by NN 
classifier. A total number of manually detected RU cells are 33 and the accuracy of 
NN using E5689 is 78.53%. Also, the sensitivity is 93.94% and the specificity is 
78.41%. 
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CHAPTER 3 

ENTER AND EXIT MITOSIS EVENTS DETECTION USING TIME-

SERIES DATA ANALYSIS METHOD 

Graph Trend Analysis 

Trend analysis refers to the notion of attempting to spot a pattern in information. 

It can be valuable as a warning indicator of potential problems or issues by predicting 

future circumstances. It can also be used to estimate specific or uncertain events in the 

past. Trend analysis can be used to predict changes and trends in social life, technology, 

fashion, weather, and consumer behavior through statistical modeling of past events. 

Thus, past and current financial ratios are compared by trend analysis in the business 

field to make important decisions in formulating business strategies and making wise 

decisions. Different mathematical and statistical models are used to find the differences 

or similarities between past and current figures and situations. As in figure 10, trend lines 

can be fitted to collect data plotted on x/y-axes and it helps to understand the trend of 

data. Like the example of trend lines, we can discover the trend of feature information of 

a cell from an image stream and it can be used to assess the relationship among cell 

events. 

Features for graph trend analysis 

Each single cell has ten features in a frame by frame and these features can be 

expressed as a line graph over time. The line graphs take four features (i.e. mean 

intensity, perimeter, area, and shape factor) among ten that are measured, all of which 

have different scales, but four features having similar fluctuation patterns during each cell 

cycle. We found that the graphs show a specific pattern as cells enter and leave mitosis. 

The mean intensity and shape factor value increase from the end of interphase to entry 

into mitosis, and reaches a maximum when the cell enters mitosis (i.e. RU state). Unlike 

mean intensity and shape factor, perimeter and area value decrease just before a cell 
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enters the RU state; reaching a minimum value when the cell is in the RU state (Fig. 11). 

On the other hand, mean intensity and shape factor values are minimal, and perimeter and 

area value are maximal in FO state following to RU state. For example, in Figure 12, the 

cell at frame 19, in the RU state in this example, has maximum intensity and shape factor 

value, and minimum perimeter and area value. The slopes of graphs change from 

negative to positive and vice-versa when the cell at frame 20, enters into the FO state. 

Using these four features, cell entry into the RU and FO states can be determined. 

Further, multiple cell divisions during image acquisition can be estimated by finding 

several candidates of maximum and minimum values. 

Limitations, however, exist because of time interval of an image sequence. The 

LSDCAS image streams were recorded with time intervals (i.e. 300 seconds) and cell 

events can occur between two frames. If so, the actual maximum/minimum values are not 

recorded and the graph trend analysis does not detect the correct frame as a result. In 

Figure 13, for example, even though the actual RU starts between frame 4 and 5, frame 4 

would be selected by graph trend analysis. In addition, FO event can occur several frames 

after RU and it depends on cell line and environment. If FO event does not occur in the 

frame immediately following the frame in which the RU event occurred, then the graph 

trend analysis cannot detect that the RU event occurred. To avoid these limitations, we 

used a moving average to create a trend line for the graph. This trend line helps to define 

a consistent overall graph trend, and is therefore unaffected by uncertain cell behaviors. 

Graph trend analysis using moving averages 

Graph trend analysis is the core technical analysis method of graphical data, and 

the moving average technique directly addresses the issue of how to define trends in an 

objective manner. A moving average is found by averaging value changes over time and 

can be used to analyze data. Three most commonly used moving average types are 

simple, weighted and exponential. The simple moving average calculates the average 
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with equal emphasis on all values, whereas weighted and exponential moving averages 

are computed with more emphasis on the most recent values. The simple moving average 

is computed by summing a given time period and dividing by a given time period. The 

equation for the simple moving average is 

 

Moving Average (MA) = !!!
!!!
!

 . 

 

For creating MA(5), where n = 5, the values of the last five time period are summed and 

divided by five. To determine the trend of a graph, the most recent value is compared to 

the average of the last five values. In other words, the graph is trending higher if the 

value is higher than average, and the graph is trending lower if the value is lower than 

average. These characteristics are broadly the same for all three types of moving average 

methods. In Figure 14, MA(5) shows the trend line of original graph. The moving 

average trend line of mean intensity is moving upward rapidly between frame 15 to 20. 

Unlike mean intensity, perimeter and area trend lines are moving downward rapidly 

between frame 15 and 20. With these three moving average trend lines, we identified a 

cells entry into RU and FO states. The relationship between cell shape and entry into 

these states can also be considered by examining changes in the trend line of the shape 

factor. Further, we overcame the limitation of the time interval problem, and reduced the 

effect of errors associated with errors in cell segmentation and tracking (Fig. 15). 

Results 

To detect cells entering RU or FO states, a graph based time-series data analysis 

named as graph trend analysis is used. When cells enter the RU state, the slopes of 

intensity and shape factor graphs become positive, and the slopes of area and perimeter 

graphs become negative. In contrast, the slopes of intensity and shape factor graphs 

become negative, and the slopes of area and perimeter graphs become positive, when 
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cells enter the FO state. Further, cells can have maximum mean intensity and shape 

factor, and minimum perimeter and area value in the RU state if the cell divides. These 

graph trends provide critical signals for the RU and FO states. By using these 

characteristics, graph trend analysis identified the RU state when a maximum slope 

change of four features occurred in the same frame, and the next frame classified as a FO 

state frame. We used an id 2 cell from E5701 as a preliminary dataset to verify the graph 

trend analysis performance and found the frame of entry of cells into the RU and FO 

states successfully determined using graph trend analysis, as shown in figure 16. 

We used the E5701 experiment to develop the graph trend analysis method, after 

which we applied it to E5689 and E5677. E5701 was not used for data analysis because 

the overall mean intensity was much brighter than other experiments which could affect 

the accuracy of the results. Tables 4 and 5 show the performance of the graph trend 

analysis in detecting RU cells. To validate our approach, we manually detected RU cells 

using casViewer which was used as a control. A Total of 473 and 194 RU cells were 

collected from E5689 and E5677, respectively. Then graph trend analysis found 

candidate RU cells by checking whether a maximum slope change of four features 

occurred in the same frame. The accuracy for E5689 is 89.03% and it is smaller than 

E5677 (94.79%). Although the ideal performance is for 100% accurate detection, a good 

alternative is to subject RUs to detect with high sensitivity and low specificity. But the 

graph trend analysis has low sensitivity and high specificity. Also the automatically 

detected RU cell events from E5689 and E5677 were significantly lower than those of the 

human observer; only detect less than 10% of RUs. False positive rates of both 

experiments (92.99% of E5689; 97.66% of E5677) are exceptionally high to use the 

method alone to detect significant cell events. 



www.manaraa.com

 

 

35 

35 

Discussion 

Trend analysis of time-series data analysis method is one of the advantageous 

ways to detect cell entry to mitosis and after mitosis cell events even though the detection 

rates using E5689 and E5677 were lower than a human observer. Because visually 

distinguishing cell states from live cell image streams is a time consuming and tedious 

process even for expert biologists. The reason why the human observer performed better 

than the automatic method is that the human observer could consider unobserved events 

between images. Unlike the human observer, automatic detection can only use the image 

information in the image sequence. As mentioned before, graph trend analysis can 

determine that a possible RU frame is 4 while an actual RU state is frame 5 (Fig. 13). 

Due to the time interval between image sequences, a maximum slope change for the four 

features can designate different frames as a RU state. To overcome this limitation, we 

expected to be able to obtain more correctly detected RU cells through extending the 

search criteria to consider slope changes of several frames by using a moving average. 

Table 6 shows the results of graph trend analysis using different moving averages. Graph 

trend analysis with moving average (5) gave us the best detection rate with highest 

sensitivity. The overall detection rate of the graph trend analysis using the moving 

average is better than without the moving average, but the moving average cannot detect 

a specific frame for the RU event, it can only detect a possible range in which the RU 

event can occur. This range is determined by the moving average number (i.e. MA(5) can 

determined 5 frame range where an RU event could possibly occur). In addition, graph 

trend analysis has one more limitation. Multiple cell divisions can occur in an experiment 

and the trend analysis is limited in that it can only detect one occurrence of the RU state 

for a single cell level. The performance of graph trend analysis is not satisfactory to 

identify the events in LSDCAS image streams and has limitations, but it provides 

sufficient information to find specific cell events by determining a possible range of cell 

events occurring. 
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To overcome the problems that graph trend analysis has and the necessity of 

general algorithm that can accept uncertain exceptions of cell movement, the paired 

graph analysis method in Chapter 4 is developed. Paired graph analysis is derived from 

time-series data analysis methods in econometrics and it also used line graph data of four 

features. Paired graph analysis can detect over one cell division(s) for a single cell in an 

experiment and the overall RU events detection rate is significantly improved over graph 

trend analysis. 
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Figure 10. Three types of trend line47. Uptrend is determined when each successive 
peak is higher than the ones found earlier in the graph. Unlike uptrend, 
downtrend is specified by the movement of data when the overall direction is 
downward. Thus, when the horizontal data movement occurs and the forces of 
supply and demand are nearly equal, we called it a sideways trend.  
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Figure 11. Tendency of four features. Mean intensity and shape factor increasing when 
cells are entering the RU. As an opposite to mean intensity and shape factor, 
perimeter and area values increasing when cells are leave the RU.  
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Figure 12. Feature graphs of E5701 cell id 2 with cell event from image stream. As 
the cell cycle progress, the graph of mean intensity, perimeter, area, and shape 
factor fluctuate. 

  



www.manaraa.com

 

 

40 

40 

 

Figure 13. A limitation of recorded image stream by time interval. Even though RU 
state is entered just before frame 5, frame 4 can be selected as RU state 
because actual value is not observed.  

 
  



www.manaraa.com

 

 

41 

41 

Figure 14. Data graph with moving averages for the MA(5) trend line. The trend line 
helps to understand the trend of data, and the moving average is a consistent 
and reliable way to define the trend. Each MA(5) line shows the overall trend 
of the original data.  
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Figure 15. MA(5) trend line to overcome a limitation of recorded image stream by 
time. We can notice the slope change between frame 0 and 5 is significant 
through MA(5) trend line and it means the RU event can occur between frame 
0 and frame 5. 
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Figure 16. Four features of E5701 Field0 cell id 2. The cell in frame 19 and 20 were 
determined to be entering the RU and FO states using manual detection. 
Graph trend analysis also indicated entry into RU and FO states at the same 
frames. 
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Table 4. Graph trend analysis results using E5689. 

  Detected by Graph trend analysis 

  RU Not RU 

Manually detected 
RU 43 (TP) 430 (FN) 

Not RU 570 (FP) 8164 (TN) 

Note: A total number of manually detected RU cells are 473 and the accuracy of graph 
trend analysis using E5689 is 89.14%. Also, the sensitivity is 9.09% and the 
specificity is 93.47%. 
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Table 5. Graph trend analysis results using E5677. 

  Detected by Graph trend analysis 

  RU Not RU 

Manually detected 
RU 12 (TP) 182 (FN) 

Not RU 500 (FP) 12391 (TN) 

Note: A total number of manually detected RU cells are 194 and the accuracy of graph 
trend analysis using E5689 is 94.79%. Also, the sensitivity is 6.19% and the 
specificity is 96.12%. 
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Table 6. Graph trend analysis results with various moving averages of E5677. 

 True Positive False Positive True Negative False Negative 

GTA 12 500 12391 182 

MA(2) 17 282 12786 177 

MA(3) 19 214 12677 175 

MA(4) 15 171 12705 179 

MA(5) 21 143 12748 173 

Note: GTA and MA represent simple graph trend analysis and graph trend analysis with 
moving averages, respectively. Accuracy of GTA is 94.79%, MA(2) is 97.84%, 
MA(3) is 97.03%, MA(4) is 97.21% and MA(5) is 97.59%. The detection rate of 
GTA is 2.34%, MA(2) is 5.69%, MA(3) is 8.15%, MA(4) is 8.06% and MA(5) is 
12.8%. 
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CHAPTER 4 

CELL ENTRY INTO MITOSIS DETECTION USING TIME-SERIES 

DATA ANALYSIS METHOD 

Non-stationary and Stationary Time-series Variables 

Most time-series variables are non-stationary, in that average and standard 

deviation can change as time passes. To test whether the variables are stationary is very 

important for long-term market analysis. Non-stationary variables suffer permanent 

effects from random, or foreign, shocks over time which will affect the forecast value. 

Unlike non-stationary variables, stationary variables are free from random shocks 

because they only cause temporary effects. Non-stationary variables have a unit root and 

we can determine whether a variable is non-stationary by the unit root test. Time-series 

variables can be formed through an autoregressive process such as 

Yt = αYt-1 + et 

where et is a random shock. A process has a unit root when α = 1. If α = 1, the equations 

become  

Yt = Yt-1 + et 

Yt+1 = Yt + et+1 = Yt-1 + et + et+1 

as time goes from t to t+1. In other words, et will remain and the effect is not reduced 

over time. If α is 0 < α < 1, however, a unit root does not exist. The equation at t+1 

becomes 

Yt+1 = αYt + et+1 = α2Yt-1 + α2et + et+1. 

In this situation, the effect of et gets smaller as time goes on. A well-known unit root test 

is the ADF test and it uses the existence of a unit root as the null hypothesis. Further, 

non-stationary data can be transformed into stationary data after differencing k times, it is 

called integrated of order k, denoted I(k). I(0) means the variable is stationary and I(1) 
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means the variable is non-stationary but it can be transformed into a stationary one by 

first differencing. 

Paired Graph Analysis 

Pairs trading 

Pairs trading is a well-known market neutral trading strategy in the stock market. 

It was developed in the mid-1980s by Nunzio Tartaglia48. It is used to enable traders to 

earn absolute returns in a steady manner from any market conditions such as uptrends, 

downtrend and sideways movement through forecasting the market. In other words, the 

aim of pairs trading is to exploit investment opportunities by measuring price ratios or 

differences of a pair of stocks and steadily earning modest returns48,49. A pair of stocks 

has to be in the same business field for example, Walmart and Target.  

A quantity, called the spread, is calculated by the quoted prices of two stocks 

(Fig. 17). The most profitable buy or sell point is when the spread becomes wider than 

some confidence level. The prices are connected together by a stochastic trend, and two 

stocks are cointegrated if the spread is mean reverting. Mean reverting is a mathematical 

concept which explains the tendency to move back to the average when a value moves 

away from the average value. The challenge of pairs trading is to identify the stocks that 

tend to move together and the mean reverting in the ratio of the prices. Even if the stocks 

seem to be related, they might not be associated with each other, and this is the reason 

why verifying the cointegration test between a pair of two stocks is necessary. 

Cointegration 

Cointegration is an econometric tool suggested by Engle and Granger50 that is 

used to test the relationship between nonstationary time-series variables. Cointegration 

and correlation are two different concepts. Unlike cointegration, correlation is only 

applicable to stationary variables and short-memory processes. In other words, 
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correlation is not appropriate to analyze the long-term behavioral relationship between a 

pair of stocks and it refers to any of the statistical relationships between a pair of stocks 

in returns. Cointegration, however, refers to co-movement in raw market prices or 

exchange rates51. In fact, cointegrated series can have correlations that are quite low at 

times because high correlation does not necessarily imply high cointegration, and vice 

versa. Figure 18 shows the difference between correlation and cointegration. 

A pair of variables are cointegrated if two variables having a unit root (i.e. 

integrated of at least order one, denoted I(1)). A cointegration test to check whether two 

variables are cointegrated is a two-step estimation procedure. The aim of the 

cointegration test is to detect any stochastic trends in stock prices and to build a general 

trend for a specific pair of stocks for analysis. Many methods have been developed for 

testing whether a cointegrating relationship exists between a pair of stocks. Of these, 

there are three methods that are more commonly used over the others: Engle-Granger 

method50, Johansen procedure52, and Philip-Ouliaris test53. General procedures of the 

Engle-Granger method is to run ordinary least squares (OLS) regressions on 

nonstationary variables and determine the relationship between the data. 

Results 

Cointegration test among features of a cell 

The cointegration test is the foundation upon which pairs trading is built and the 

basic cointegration function can easily be found in any statistical software package. The 

statistical package R is free software for statistical computing. It provides time series 

analysis, linear regression models using ordinary least squares (OLS), spread calculation 

function, Augmented Dickey-Fuller (ADF) test and p-value to test pairs of stock prices 

for cointegration. Using R for the cointegration test is a fast and easy way to verify the 

result. We tested for cointegration between intensity, perimeter, area, and shape factor. 

Figures 19 and 20 illustrate sample R code for the cointegration test54 using intensity and 
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perimeter pairs from E5701 cell id 2 by the ADF test and the Phillips-Ouliaris test, 

respectively. This test uses the Engle-Granger method, one of three major cointegration 

tests mentioned earlier, and Philip-Ouliaris method. The cointegration test using R is a 

preliminary test that confirms whether two feature pairs are cointegrated or not. 

In figure 19, zoo and tseries library are loaded for handling time-series data. Then, 

the csv files are read and two columns are chosen (the mean intensity and the perimeter) 

into one t.zoo object using the merge function. After creating a data frame for applying 

statistical functions, we tested whether time-series variables were cointegrated. The unit 

root test is the first step in general pairs trading. However, we constructed the spread, 

then tested the spread for a unit root in R. The lm function in R is a formula that specifies 

the linear model. A simple linear equation with no y intercept is given as follows 

yi = βxi + ei 

where ei is random error. We used first regression coefficient (β) as a hedge ratio for 

calculating the spread. A hedge ratio is a ratio comparing the value of a position protected 

via a hedge with the size of the entire position itself and the spread is a gap between two 

stock prices. In paired graph analysis, the spread is a gap between two features such as 

mean intensity and perimeter. The equation for calculating spread is 

spread = intensity – (β * perimeter). 

Then ADF test will shows the p-value of the mean intensity and perimeter pair through 

spread value. Similar to the ADF test, R provides the Phillips-Ouliaris test named po.test 

and it also uses the zoo and tseries library in the R package (Fig. 20). 

If a p-value is smaller than a given statistical significance level, generally a 0.05 

or 95% confidence interval, the relation is statistically meaningful. Tables 7 and 8 show 

p-values among intensity, perimeter, area and shape factor features. 

Table 7 summarizes the p-values obtained using the ADF test of spread (i.e. 

column A – (β * row B)) and the Phillips-Ouliaris cointegration test using id 2 cell. We 

used two different cointegration tests to determine whether the data is cointegrated or not, 
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because each cointegration test provides a different result. By the ADF test, only the 

perimeter and area pair are cointegrated (p < .05). In other words, either the tests all 

failed or the perimeter and area pair worked. The reason why the p-values of id 2 cell are 

below the statistical significance level, is a because of small sample size. Id 2 cell has 

only 24 data points and that is not enough to determine whether pairs are cointegrated or 

not. Even though many economists argue about optimal data points for the cointegration 

test, they agree that larger data sets are better for the stability of predictions. In addition, 

although the 95% confidence level is the most common, it is not always the most 

reasonable. Choosing a significance level can depend on sample size. To confirm the p-

value issue, id 6 cell was also tested with the cointegration test. Id 6 cell is proper to test 

because it divided twice during cell growth and imaged 59 frames in LSDCAS system. 

Table 8 gives the p-values for each of the cointegration tests and confirms that the 

variables are cointegrated. 

In table 8A, we can see that all the pairs of id 6 cell are cointegrated according to 

the p-values which are less than 0.05. The most significant parings are those with area, as 

indicated by the p-values which are listed only as being less than 0.01. Spread value from 

[intensity – (β * perimeter)] was been used for paired graph analysis because it has the 

minimum measurable p-value among the ratios. 
 

Paired graph analysis with divergence threshold 

The (Stock A – Stock B) and (Stock A / Stock B) graphs are the two simplest 

methods to do pairs trading when two stocks have the same trading patterns (i.e. constant 

price ratio). Each has its own merit and some traders seem to prefer one method over the 

other. For example, if one stock is trading at $1000 and another at $500, the difference is 

500 but the ratio is only 2. This is the reason why using the ratio may yield a better 

comparison of the actual value of each stock. Traders can sell, or buy, one stock when the 
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ratio of a pair of stocks reach a specific standard deviation generally two standard 

deviations (S.D. or std), and stop trading stock when the ratio returns to the mean (Fig. 

21).  

As for pairs trading, a ratio graph of two features can be used to analyze trading 

pairs. We chose the intensity and perimeter pair to apply pairs trading rules to because 

this pair has the minimum measurable p-value from the unit root test (Table 8). Figure 22 

shows the fluctuation of the (intensity / perimeter) ratio graph of id 2 and 6 cell from 

E5701. Two cells were collected and used as preliminary data to verify the paired graph 

analysis method. When the (intensity / perimeter) ratio values go down after hitting the 

divergence threshold, it can indicate entry into the RU state, and pinpoint the relevant 

frame. Using this rule, it is possible that frame 19 and frame 58 can be in the RU state 

because the graph is going down after hitting the divergence threshold between frame 19 

and 20 of Figure 22A, and between frame 58 and 59 of Figure 22B. 

A critical step in paired graph analysis and pairs trading is selecting appropriate 

divergence thresholds. Just as the divergence threshold determines the critical point to 

earn maximum profit in pairs trading, a proper divergence threshold for paired graph 

analysis can identify specific cell events. 2 S.D. is generally used for the divergence 

threshold in the pairs trading method55,56 and we applied the same threshold to validate 

the paired graph analysis. Unlike stock data, recorded cell image data has dynamic 

movement because cells can attach or fuse with neighboring cells when they grow. To 

find the best threshold for detecting the most true positives (i.e. RU events) we tested 

various divergence thresholds (Table 9). We first utilized a 2 S.D. threshold in our paired 

graph analysis. This yielded a low true positive rate, and so we lowered this threshold to 

1.5 S.D., which is used by some traders56. The 1.5 S.D. threshold yielded a high false 

positive rate. Therefore, in our final analysis, we tuned the threshold parameters to the 

data. The optimum threshold for these data is 1.65 S.D., and we used that value in our 

analysis. Tables 10 and 11 show the RUs detection results using the 1.65 S.D. divergence 
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threshold when applied to E5689 and E5677, respectively. The results show that our 

method has a good sensitivity; 75.69% for E5689 and 72.16% for E5677. E5689 has 594 

RU cells from a total of 9207 cell events and E5677 has 194 RU cells from a total of 

13085 cell events. Only 6.45% and 1.48% of RU cells exist in E5689 and E5677. As 

such, high false positives are always to be expected. Based on the results, we determined 

the paired graph analysis method is well-suited to these data and potentially to other 

similar data. 

Discussion 

Paired graph analysis is derived from pairs trading which is commonly used to 

detect a maximum earning point in the stock market. We developed paired graph analysis 

method which is inspired by pairs trading. Our pairs trading inspired method yielded an 

improvement over graph trend analysis. 

The major goal of automatic cell events detection and analysis system 

development is identifying cell division at the single cell level. If the automatic system 

can associate daughter cells to their parent cells, then we can calculate cell doubling time 

which is useful in understanding cell dynamics under various environmental conditions 

such as radiation and pre-clinical studies for chemicals. To achieve this goal, we 

developed an algorithm that can detect cell division the details of which are in Chapter 5. 
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Figure 17. Pair trading. When the price difference between stock A and B is greater 
than the confidence range (i.e., two standard deviations), it is recommended to 
sell stock A and buy stock B. The price difference of cointegrated stocks, A 
and B, will go back to the confidence range because of the mean reverting 
property. 
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Figure 18. Difference between correlation and cointegration. A. Correlation graph 
between SPDR gold shares (GLD) and Market vectors gold miner ETF 
(GDX) from March, 2008 to February, 2009. The prices move together but are 
not mean revertent, B. Cointegration graph between Kennetcott and Uniroyal 
from August, 1963 to January, 1964. The prices move together and have a 
mean reverting property48. 
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Figure 19. Cointegration test using R. R code to test whether the intensity and perimeter 
pair of id 2 cell from E5701 is cointegrated using the ADF test. 

 
  

#	
  Load	
  the	
  zoo	
  and	
  tseries	
  packages. 
# 
:>	
  library(zoo) 
:>	
  library(tseries) 
#	
  Read	
  the	
  CSV	
  file	
  into	
  data	
  frames. 
# 
:>	
  input	
  <-­‐	
  read.csv(“./E5701_id_2.csv”,	
  stringsAsFactors=F) 
#	
  The	
  5

th
	
  and	
  6

th
	
  column	
  each	
  contains	
  intensity	
  and	
  perimeter	
  values.	
  The	
  zoo	
   

#	
  function	
  can	
  create	
  zoo	
  object	
  which	
  contain	
  several	
  columns	
  from	
  input	
  data. 
#	
   
:>	
  intensity	
  <-­‐	
  zoo(input[,5]) 
:>	
  perimeter	
  <-­‐	
  zoo(input[,6]) 
#	
  t.zoo	
  is	
  a	
  zoo	
  object	
  with	
  two	
  columns	
  by	
  the	
  merge	
  function. 
# 
:>	
  t.zoo	
  <-­‐	
  merge(intensity,	
  perimeter,	
  all=FALSE) 
#	
  Create	
  a	
  data	
  frame	
  for	
  applying	
  statistical	
  functions 
# 
:>	
  t	
  <-­‐	
  as.data.frame(t.zoo) 
#	
  The	
  lm	
  function	
  builds	
  linear	
  regression	
  models	
  using	
  ordinary	
  least	
  squares 
#	
  (OLS).	
  This	
  linear	
  model	
  have	
  zero	
  intercept	
  and	
  first	
  regression	
  coefficient	
  
of	
   
#	
  model	
  is	
  extracted	
  for	
  hedge	
  ratio. 
# 
:>	
  m	
  <-­‐	
  lm(intensity~perimeter+0,	
  data=t) 
:>	
  beta	
  <-­‐	
  coef(m)[1] 
#	
  Compute	
  the	
  spread 
# 
:>	
  sprd	
  <-­‐	
  t$intensity	
  –	
  beta*t$perimeter 
#	
  Augmented	
  Dickey-­‐Fuller	
  test	
  is	
  for	
  a	
  unit	
  root	
  test. 
# 
:>	
  ht	
  <-­‐	
  adf.test(sprd,	
  alternative=“stationary”,	
  k=0) 
#	
  Show	
  the	
  p-­‐value.	
  A	
  small	
  p-­‐value	
  means	
  that	
  the	
  spread	
  is	
  mean-­‐reverting. 
#	
   
:>	
  ht$p.value 
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Figure 20. Cointegration test using R. R code to test whether the intensity and 
perimeter pair of id 2 cell from E5701 is cointegrated using the Phillips-
Ouliaris test. 

  

#	
  Load	
  the	
  zoo	
  and	
  tseries	
  packages. 
# 
:>	
  library(zoo) 
:>	
  library(tseries) 
#	
  Read	
  the	
  CSV	
  file	
  into	
  data	
  frames. 
# 
:>	
  input	
  <-­‐	
  read.csv(“./E5701_id_2.csv”,	
  stringsAsFactors=F) 
#	
  The	
  5

th
	
  and	
  6

th
	
  column	
  each	
  contains	
  intensity	
  and	
  perimeter	
  values.	
  The	
  zoo	
   

#	
  function	
  can	
  create	
  zoo	
  object	
  which	
  contain	
  several	
  columns	
  from	
  input	
  data. 
#	
   
:>	
  intensity	
  <-­‐	
  zoo(input[,5]) 
:>	
  perimeter	
  <-­‐	
  zoo(input[,6]) 
#	
  t.zoo	
  is	
  a	
  zoo	
  object	
  with	
  two	
  columns	
  by	
  the	
  merge	
  function. 
# 
:>	
  t.zoo	
  <-­‐	
  merge(intensity,	
  perimeter,	
  all=FALSE) 
#	
  Phillips-­‐Ouliaris	
  cointegration	
  test 
#	
  
:>	
  po.test(t.zoo,	
  demean=FALSE)	
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Table 7. P-values of intensity, perimeter, area, and shape factor pairs by the ADF 
test and the Phillips-Ouliaris cointegration test using E5701 cell id 2. 

A               B intensity perimeter area shape 

intensity 

 

0.2063011 0.1731417 0.1803626 

perimeter 0.2069329 

 

0.04938569 0.2080008 

area 0.1740278 0.05025257 

 

0.1979882 

shape 0.1804134 0.2070812 0.1980294 

 (A) 

 

A               B intensity perimeter area shape 

intensity 

 

0.06075 0.07075 0.1257 

perimeter 0.05514 

 

0.1492 0.06398 

area 0.06078 0.1398 

 

0.05316 

shape 0.1198 0.06605 0.05887 

 (B) 

Note: The id 2 cell from E5701 was used to test statistical significance (p < 0.05). A. All 
the p-values by ADF test are larger than 0.05 except perimeter and area pair. Only 
perimeter and area pair has statistical significance, B. All the p-values by Phillips-
Ouliaris test are larger than 0.05. 
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Table 8. P-values of intensity, perimeter, area, and shape factor pairs by the ADF 
test and the Phillips-Ouliaris cointegration test using E5701 cell id 6. 

A             B intensity perimeter area shape 

intensity 

 

0.01456453 < 0.01 0.01484952 

perimeter 0.01425749 

 

< 0.01 0.01629093 

area < 0.01 < 0.01 

 

< 0.01 

shape 0.01507427 0.01691893 < 0.01 

 (A) 

 

A             B intensity perimeter area shape 

intensity 

 

0.0652 0.0359 0.0325 

perimeter 0.04761 

 

0.01 0.04817 

area 0.02343 0.01 

 

0.03275 

shape 0.02837 0.05434 0.04281 

 (B) 

Note: The id6 cell from E5701 was used to test the statistical significance. A. All the p-
values by ADF test are less than 0.05 showing that all the relations among four 
features are statistically significant at the 95% confidence level, B. All the p-values 
by the Phillips-Ouliaris test. Only two pairs have larger than 0.05 p-values. 
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Figure 21. Pairs trading rules. The price ratio value between the entry point and the 
closing point will be the expected profit amount and ideal stock trading 
interval. 
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Figure 22. Intensity / perimeter ratio graph with 1 S.D. and 2 S.D. of id 2 and 6 cell 
from E5701. A. By the pairs trading rules, frame 19 is the most candidate RU 
frame of this cell cycle in id 2 cell ratio graph, B. Frame 58 is the most 
suspicious RU frame of id 6 cell.  
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Table 9. Correctly detected RU events rate with Divergence threshold test using 
E5677. 

 True Positive False Positive True Negative False Negative 

1.5 S.D 145 992 11899 49 

1.65 S.D. 141 585 12306 53 

1.75 S.D. 139 475 12416 55 

2.0 S.D 124 313 12578 70 

Note: S.D. represents standard deviation and it used as a divergence threshold to detect 
candidate RU cells. Accuracy of 1.5 S.D. is 92.04%, 1.65 S.D. is 95.12%, 1.75 S.D. is 
95.95% and 2.0 S.D. is 97.07%. The detection rate of 1.5 S.D. is 12.75%, 1.65 S.D. is 
19.42%, 1.75 S.D. is 22.64% and 2.0 S.D. is 28.38%. 
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Table 10. Paired graph analysis with 1.65 S.D. divergence threshold results using 
E5689. 

  Detected by Graph trend analysis 

  RU Not RU 

Manually detected 
RU 358 (TP) 115 (FN) 

Not RU 865 (FP) 7869 (TN) 

Note: A total number of manually detected RU cells are 473 and the accuracy of paired 
graph analysis using E5689 is 89.36%. Also, the sensitivity is 75.69% and the 
specificity is 90.1%. 
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Table 11. Paired graph analysis with 1.65 S.D. divergence threshold results using 
E5677. 

  Detected by Graph trend analysis 

  RU Not RU 

Manually detected 
RU 140 (TP) 54 (FN) 

Not RU 620 (FP) 12271 (TN) 

Note: A total number of manually detected RU cells are 194 and the accuracy of paired 
graph analysis using E5677 is 94.85%. Also, the sensitivity is 72.16% and the 
specificity is 95.19%. 
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CHAPTER 5 

DAUGHTER CELLS TO THEIR PARENT CELL ASSOCIATE AFTER 

MITOSIS 

Object Tracking and Position Estimation using Kalman 

Filter 

Object tracking is a process to develop a trajectory by detecting objects and 

establishing a correlation between these objects across frames of the image stream. 

Object tracking can be divided into six main classes: deterministic methods, statistical 

methods, template and density based appearance models, multi-view appearance models, 

contour evolution, and matching shapes57. In live cell imaging, Kalman filtering is the 

most commonly used method in statistical object tracking. 

R.E. Kalman invented a Kalman filter in 196058. A Kalman filter is mathematical 

recursive process to estimate the state of a linear system with minimum squared error59. 

The aim of a Kalman filter is to use measurements observed over time to determine a 

linear system that approximates the measurement values in a least squared error optimal 

sense. It is widely used in object tracking and predicting, and has even been used in 

vehicle navigation systems60. Simple and recursive algorithms provide current estimates 

of the position coordinates using statistical models to properly update each new 

measurement relative to past information. Commonly used are past position, speed, 

acceleration, and direction. The state equation and measurement equation of a Kalman 

filter for general linear system are 

State equation: xk = Axk-1 + Buk-1 + wk-1 

Measurement equation: yk = Hxk + vk 

where uk-1 is the control input, wk is process noise and vk is measurement noise. The noise 

variables are independent, normally distributed random variables. 
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P(w) ~ N(0, Q), 

P(v) ~ N(0, R). 

The process noise covariance Q and measurement noise covariance R matrices 

can be time-varying. The terms are typically not known in practical applications. The 

state equation indicates an overall signal wave of the system and the measurement 

equation demonstrates measurable values among signals of the system. The state of a 

system, denoted by the vector x, describes information about current state of the system, 

including spatial coordinates, angles, and acceleration bias. Because it is impossible to 

estimate x directly, x is estimated from repeated observation. In other words, the state of 

system can only be estimated by measurements of the system60,61. Tuning the error 

covariances is a challenging task for obtaining more accurate estimated x values, since 

the vector y is corrupted by measurement noise59,62. A Kalman filter is composed of an 

initial value and two main steps, prediction and correction (Fig. 23). !!! is a prior state 

that must be estimated forward from time step ! − 1 to step !. !! denotes a posterior 

state that is estimated from given measurement !! at step !. !!! and !! indicate a prior 

and a posterior estimation error covariance matrix, respectively. The optimal value can be 

estimated by recursive data processing using !!! and !!. 

Results 

For detecting accurate histories of individual cell fates, we need to link daughter 

cells with their corresponding parent cell. Accurate cell growth analysis of each image 

sequence will be possible only after a single cell pedigree is correctly identified. We 

applied reverse Kalman filter to estimate two centroids of two daughter cells and 

determine their parent cell by determining whether two estimated centroids are ever 

located in a single cell. We also combined paired graph analysis to find entry into the RU 

state and reverse Kalman filter to estimate centroids for finding accurate daughter cells 

after entry into the FO state. 
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Cell centroid estimation using Kalman filter 

As mentioned, a Kalman filter is a recursive process to estimate the state of a 

linear system and often used to track objects in space over time. Cell motility in image 

sequences is nonlinear, but we can estimate this motion using a recursive set of linear 

system equations. Thus, cell motility can be estimated by previous motility and future 

cell centroid position can be also estimated by previous position. Figure 24 illustrates the 

process of identifying daughter cells after cell division. We used a Kalman filter for this 

process.  

At first, a Kalman filter in the LSDCAS system needs initialized values of the 

state (!!!!) and the error covariance (!!!!). We use 4x1 matrix for the state and 4x4 

identity matrix for the error covariance. Then, we project the state (!!!) and the error 

covariance (!!!) ahead from the initial estimated values. Predicted centroid position (!!) 

can be generated after !!! calculation and is a 4x1 matrix. Kalman gain (!!) is computed, 

!! is updated with the actual centroid value (!!). !! is also updated. The system 

continues to predict the cell centroid via optimal recursive data processing; repeating 

calculations until convergence. Results using test data to verify Kalman filter using 

LSDCAS data are shown in Figure 25. The solid line represents the true position, or 

actual, and dotted the line is the estimated position, or predicted position. The average 

difference between actual and predicted is about 0.086 pixels for the x-coordinate and 

0.73 pixels for the y-coordinate, and the predicted centroid position was within the cell 

border. If the estimated centroid of a cell is within the border of a cell in a subsequent 

image, the LSDCAS system identifies these two cells as being the same cell. In other 

words, a Kalman filter can be used as a secondary verification tool for cell tracking. 

Further, we can separate single cells from the attached cell. 
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Reverse tracking and estimation using Kalman filter 

Normal cell division produces two daughter cells from a parent cell. This event 

can be detected through a reverse application of a Kalman filter. In normal cell division, a 

cell splits into two daughter cells, each of which moves in different directions. The 

reverse Kalman filter can identify the parent cell for a pair of daughter cells by estimating 

the centroid of a parent cell from two centroids of daughter cells. We determine a normal 

division if two estimated centroids are within one cell border at any time point when we 

track backward (Fig. 26). An example of normal cell division shows the RU, FO and two 

daughter cells formations as time progresses in Figure 26A. In Figure 26B, the cells 

corresponding to id is 4 and 19 have an estimated (green dot) and actual (red dot) 

centroid at frame 21 and 22 by using reverse Kalman filter. Then two estimated centroids 

of id 4 and 19 at frame 20 are centered within one cell (i.e. id 4). In this case, we can 

determine id 4 cell normally divided into id 4 and 19. Thus, cell centroid position 

prediction using reverse Kalman filter is able to determine whether a cell has undergone 

normal cell division estimate via reverse Kalman filtering. 

Table 12 summarizes the result of applying the reverse Kalman filter with 

candidate RU states obtained from paired graph analysis. If two estimated centroids share 

a candidate parent cell and the candidate parent cell had been detected as a candidate RU 

by paired graph analysis, we can assume the cell divided into two daughter cells through 

mitosis. Also we add the additional conditions to improve accuracy: 1) shape factor of 

candidate RU cells should be over 0.6, 2) candidate RU cells should be segmented at 

least 3 frames in a row, and 3) area of candidate RU cells should be larger than half of 

median cell area and smaller than 1.5 times of median cell area in frame 0 of each 

experiment. Candidate RU cells should recognized by the segmentation application 

because we need at least 3 steps for detecting cell division; Round Up (RU), Normal 

Division (ND) and Flatten Out (FO). Thus, we setup the area value range in order to 

eliminate false positive RU cells. RU cells tend to have the smallest area values and 
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frame 0 has the smallest number of cells in image streams. We set the broad range in the 

previous conditions to improve the accuracy rate of our analyses by using these known 

characteristics. The results of reverse Kalman filter with paired graph analysis shows the 

detection rate of the RU-FO states with daughter cells (mitosis). An accuracy rate of 

E5689 is 88.57% and 94.86% of E5677.  

Discussion 

We expected the accurate measurement of cell pedigree is possible if we can 

detect appropriate RU state using paired graph analysis and/or graph trend analysis. By 

using reverse Kalman filter with paired graph analysis, we achieved overall 91.72% 

accuracy of our novel algorithm to detect cell division automatically. Total number of 

manually detected normal division related cell events is 1700 (425 single cell division * 4 

(RU, ND, and 2 FO)) and this corresponds to 7.63% of all cell events in E5689 and 

E5677. Further, total number of false positives is similar with true positives.  

To validate our algorithm we used a sub-tree detection and comparison method 

based on graph theory. Unlike other trees, all the cell events in LSDCAS image streams 

can be shown as a directed acyclic graph (DAG) and over time. By using the time 

variable and the type of event, we can determine whether the cell events detected by 

manual and automatic detection are identical. Details about the quantitative analysis of 

cell event detection using sub-tree detection and comparison methods is in Chapter 7.  
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Figure 23. Three steps of Kalman filter estimation. The time update projects the 
current state estimation and error covariance forward in time. Then, the 
measurement update modifies the estimate by an actual measurement. 
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Figure 24 .Workflow of Kalman filter for LSDCAS. User determines and initializes !, 
!, !, ! before the estimation begins, and ! and ! at time step ! − 1. Then, 
!!!and !!! estimates forward from time step ! − 1 to step !. Estimated values 
!! at time step ! can be calculated by ! and !!!. !!, !!, and !! are computed 
using !, ! and !!. The recursive process of Kalman filter repteats these 
calculations till the estimation is complete.  
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Figure 25. Actual and estimated cell position of E5701 cell id 2 using Kalman filter. 
(x, y) coordinates of actual and estimated. The maximum difference between 
actual and estimated x coordinate is 5 pixels in frame 16, and 6 pixels for the 
y coordinate in frame 1. 
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Figure 26. Identify the parent cell for a pair of daughter cells using reverse Kalman 
filter. A. An example of cell tracking for normal cell division from E5689 
experiment. The cell is the RU at frame 13, the FO between frame 14 and 20, 
and divided two daughter cells at frame 21, B. Green and red dot represent 
estimated and actual cell centroid position, respectively. Id 4 cell divided 
normally to id 4 and 19. Two daughter cells, id 4 and 19, are used to estimate 
the centroid by reverse Kalman filter. 
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Table 12. Reverse Kalman filter with paired graph analysis results. 

 

Total number of 
normal division  

(Manually 
detected) 

Detected normal 
division False positives False positive 

rate 

E5689 317 207 153 42.50% 

E5677 108 73 133 64.56% 

Note: Manually detected cell divisions are only count a cell division which cell normally 
divided and forms two daughter cells. The detection rate of E5689 is 57.5% and 
E5677 is 35.44%. 
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CHAPTER 6 

QUANTITATIVE ANALYSIS OF CELL EVENTS DETECTION 

METHODS 

Sub-tree Detection and Comparison 

An essential component to our research is to extract the set of cell division events 

that includes the RU and FO cell events. Such a set of cell divisions is termed a sub-tree 

in this research. The detection of sub-trees requires the detection of RU events by paired 

graph analysis and the association of daughter cells to their parent cells. These two results 

can be combined and represented as a sub-tree. The performance of our automatic cell 

division detection algorithm can be verified by comparing its results with manually 

annotated cell division trees. Manually detected cell events are modeled as temporal 

sequences and represented using directed acyclic graphs (DAGs). Our automatically 

detected cell division events can be compared to this graph. The sequential order of the 

RU and FO are defined by the timestamp (frame). The general procedures for sub-tree 

detection and comparison method as follows: 1) find and match the graphs by identifying 

nodes that represent the same events in both graphs. Since the event name acts as a key, 

we can use it as the primary matching constraint. 2) Compare graph topology with 

respect to minimum time differences (these being defined by the distance between two 

nodes). Some pairs of nodes corresponding to different events are similar with respect to 

their structure and may represent the same events tree. 3) Detect and consider missed 

nodes. Normal cell division is assigned as a unit, or sub-tree, of the whole cell pedigree 

and we can verify our novel methodologies by the detection rate of these sub-trees. 

Furthermore, two adjacent sub-trees in different time frames can be considered to be 

connected by a single edge and we can build a whole pedigree by utilizing connections. 

Our methods focus on finding RU and FO cells, therefore we have ignored other cell 

events in the cell pedigree. Time differences between RU and FO between manual and 
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automatic detection can also be used to measure the magnitude of a cell division. Figure 

27 is the example of RU events detection and the comparison procedure of manually and 

automatically detected cell events. 

Root Mean Square (RMS) 

The RMS is an error calculation method. We used it to quantify the performance 

of the reverse Kalman filter with the paired graph analysis.  The RMS value is used to 

determine the absolute error of the system and it can be calculated for a series of discrete 

values. We have applied it to the frame differences between RU and FO events in order 

to compare the manual annotation and automatic detection methods. Our sub-tree cell 

division information can be distinguished by a combination of the event name and the 

frame that the event occurs. Accordingly, we calculated the absolute error of the frame 

differences between manually and automatically detected cell events, in what is a useful 

way to determine the performance of our method. The RMS squares each frame 

difference, and sums them, guaranteeing that differences in frame in either direction 

(either earlier or later for either procedure) are accumulated. Dividing by n-1 gives a 

standardized value, akin to calculating a variance. Taking the square root of this 

standardized value yields a typical frame difference between events detected between the 

two methods. The formulation of RMS is defined as 

 

RMS = (!"#$%  !"##$%$&'$  !"#$""%  !"  !"#  !")!  
!!!

 

 

where n is the number of sub-trees detected by both manual and automatic detection. 

Table 13 shows the RMS result of E5689 and E5677. The maximum frame difference in 

E5689 and E5677 are 4 and 6 frames, respectively. We were able to identify correctly 

66.39% of cell events using the reverse Kalman filter with the paired graph analysis, with 

an overall false positive rate of 33.61%. For detected cell events, our RMS was 0.0532 
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for E5689 and 0.15 for E5677. The time differences for E5689 and E5677 are only 15.9 

and 45 seconds, respectively (Table 13). E5689 has a total number of 3400 frames, 170 

frames in each field, and E5677 has a total number of 4340 frames, 217 frames in each 

field, with a 300 second frame interval. The RMS values are only 15.9 seconds over 14 

hours of E5689 and 45 seconds over 18 hours of E5677. Small RMS values demonstrate 

that our reverse Kalman filter with paired graph analysis method can detect cell division 

with 0.0313% of E5689 and 0.069% of E5677 error rates. 

Median Analysis 

The RMS method is informative in determining the accuracy of the timing of our 

algorithm when a cell event is detected by our algorithm, but does not evaluate the rate at 

which cell events are detected.  To determine further the efficacy of our reverse Kalman 

filter with paired graph analysis algorithm, a one-number summary of this quantity for a 

typical run is desirable. Statisticians often use measures of central tendency to 

demonstrate a typical value of a distribution. The median is one of the commonly used 

measures. Due to its robustness against outliers, we have chosen the median as the 

preferred measure of central tendency for our experiment. We ran our algorithm on 

E5689 and E5677 experiments. Because manual detection yields 100% accuracy in 

detecting cell events, we consider the number of cell events detected manually as the full 

set of cell events in the experiment. We then compute the proportion of cell events that 

our method was able to detect. The median of these proportions will then present the 

typical percent of cell events our algorithm can correctly identify. This yields a typical 

accuracy of the algorithm. 

 The estimated proportion of cell divisions detected automatically compared to 

manually is 0.653 for E5689 and 0.676 for E5677. In other words, reverse Kalman filter 

with paired graph analysis can detect approximately 66% of all cell divisions in these two 

samples.  
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Figure 27. Comparing manually annotated and automatically detected tree. 
Automated cell event analysis methods can detect RU and FO states with 
frame information when it happens. By matching events name and minimum 
frame difference value, we can compare the result between manual annotated 
and automatically detected events, and evaluate the performance of analysis 
methods. 
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Table 13. The RMS results of E5689 and E5677. 

 RMS 

frame time 

E5689 0.0531576 15.9 

E5677 0.150480  45 

Note: 59 sub-trees out of 207 sub-trees in E5689 and 38 sub-trees out of 73 sub-trees 
have frame differences between manual annotation and automatic detection.  
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

In this dissertation, three novel methodologies have been developed to detect cell 

morphological change automatically. These three methods use the graph based times-

series data analysis and the applied Kalman filter. We have validated the paired graph 

analysis method for RU detection, the reverse Kalman filter method for FO-RU detection, 

and the combined paired graph analysis and reverse Kalman filter for cell division 

detection. The results of three novel methodologies are shown in Table 14. The novel 

methods are developed from graph trend analysis to reverse Kalman filter with paired 

graph analysis. For the data analyzed here, these methods yield improvement over the 

current methods in the literature with respect to detection rate and false positive rate. 

Because there are no unique characteristics in the data sets we analyzed that would seem 

to favor our methods, it is expected that these trends will hold true in other data sets as 

well. 

Machine Learning Based Cell Events Determination 

Manually annotated RU events from E5701 and E5689 field 0 were used as a 

training data set for a neural network and a test data set (E5701 and E5689 field 1) is used 

to compare against the predicted cell events. We collected a total number of 59 RU cells 

from E5701 and E5689 to build a training set, and then we applied the classifier trained 

from each experiment to the test set. The neural network successfully detected 28 RU 

cells out of 29 actual RU cells from E5701 test set. This set has a total number of 5964 

cell events. Further, E5689 test set has a total number of 4489 cell events and the neural 

network classifier detected 31 RU cells from 33 actual RU cells. In this research, we 

determined that a neural network is suitable model to detect cell events by true positive 

rates; about 97% of E5701 and about 94% of E5689.  
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The neural network, however, has two limitations. First, false positive rates were 

also high, a characteristic which can potentially degrade the performance of detecting 

true positives. Second, the neural network is not equipped to handle a sequence of events 

(i.e. the RU-FO progression). These facts indicate that additional methods for detecting 

cell events are still desirable, especially those that can detect a sequence of events or 

lower false positives rates. We have developed a method to detect a cell’s entrance and 

exit from mitosis using time-series data analysis techniques in order to address one of the 

concerns of the neural network approach. 

Enter and Exit Mitosis Events Detection using Time-Series 

Data Analysis Method 

To detect cells entering RU or FO states, we have developed a graph based 

technique based on the time-series data analysis known as graph trend analysis. We 

utilize this technique based on four features: mean intensity, area, perimeter and shape 

factor. When cells enter the RU state, the slopes of intensity and shape factor graphs 

become positive, and the slopes of area and perimeter graphs become negative. In 

contrast, the slopes of intensity and shape factor graphs become negative, and the slopes 

of area and perimeter graphs become positive when cells enter the FO state. Further, cells 

can have maximum mean intensity and shape factor, and minimum perimeter and area 

value in the RU state if the cell divides.  

We collected a total of 667 manually annotated RU cells from E5689 and E5677 

as a control to validate our approach. The rate of detection is high (E5689: 89.03% and 

E5677: 94.79%), but the graph trend analysis also has high false positive rates; less than 

10% of events labeled as RU by our algorithm are truly RU events. Because of 

exceptionally high false positive rates (92.99% of E5689; 97.66% of E5677), we 

extended the search criteria to reduce false positives by utilizing a moving average which 

can is capable of considering slope changes over several frames.  
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We tested four different moving average criteria and the overall detection rates 

are better than without the moving average criteria. In addition, we determined graph 

trend analysis with a moving average (5) is the most suitable criteria for our dataset. But 

the moving average has one limitation: it cannot detect a specific frame for the RU event 

and can only detect a possible range in which the RU event occured. This range is 

determined by the moving average number (i.e. MA(5) determined a 5-frame range 

where an RU event could possibly have occurred). 

To overcome these issues and to additionally account for uncertain exceptions in 

cell movement, we developed the paired graph analysis method.  

Cell Entry into Mitosis Detection using Time-series Data 

Analysis Method 

Paired graph analysis is derived from time-series data analysis methods in 

econometrics and we have applied it to the line graph data of four features. Paired graph 

analysis can detect more than one cell division for a single cell in an experiment and we 

have demonstrated that the overall RU events detection rate is significantly improved as 

compared to graph trend analysis.  

The mean intensity and perimeter are selected by a cointegration test and their 

ratio graph was used to find significant outliers. These outliers indicate RU events. We 

tested various threshold values to find the optimum threshold for our dataset. The 1.65 

S.D. threshold was selected for our analyses. The results using E5689 and E5677 show 

that our method has sensitivity: 75.69% of E5689 and 72.16% of E5677. E5689 has 594 

RU cells from a total of 9207 cell events and E5677 has 194 RU cells from a total of 

13085 cell events. Only 6.45% and 1.48% of cells undergo an RU event in E5689 and 

E5677. As such, high false positives are always to be expected. Based on the results, we 

determined the paired graph analysis method is well-suited to these data and potentially 

to other similar data. 
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In addition, a major goal of our automatic cell events detection and analysis 

system development is the identification of cell division at the single cell level. If the 

automatic system can associate daughter cells to their parent cells, then we can calculate 

cell doubling time. This is useful in understanding cell dynamics under various 

environmental conditions, such as radiation and pre-clinical studies for chemicals. To 

achieve this goal, we have developed an algorithm that can detect cell division using 

paired graph analysis and applied Kalman filter. 

Daughter Cells to Their Parent Cell Associate After Mitosis 

A Kalman filter is a recursive process used to estimate the state of a linear system 

and is often used to track objects in space over time. Using a Kalman filter we can 

estimate future cell positions in LSDCAS image streams. Additionally, normal cell 

division can be detected through a reverse application of the Kalman filter. In normal cell 

division, a cell splits into two daughter cells, each of which moves in different directions. 

A reverse Kalman filter can identify the parent cell for a pair of daughter cells by 

estimating the centroid of the parent cell from the two centroids of the daughter cells.  

We applied a reverse Kalman filter with paired graph analysis because all cell 

divisions start from RU cells. The result of the reverse Kalman filter utilized in 

conjunction with the candidate RU states obtained from paired graph analysis show that 

this combined algorithm is suitable to detect cell division automatically in our dataset. 

The overall accuracy rate of the reverse Kalman filter with paired graph analysis 

technique is 62%. The total number of manually detected normal division related cell 

events is 3644 and this corresponds 16.3% of all cell events in E5689 and E5677. 

Furthermore, total number of false positives is smaller than true positives. We consider 

this to be satisfactory performance for our data set.  

In addition, to build and analyze whole cell pedigrees by connecting single cell 

division, we used a sub-tree detection and comparison method based on graph theory as a 
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quantitative analysis of cell events detection. Unlike other trees, all the cell events in 

LSDCAS image streams can be shown as directed acyclic graphs (DAGs). By using the 

time variable and the type of event, we can determine whether the cell events detected by 

manual and automatic detection are identical.  

Quantitative Analysis of Cell Events Detection Methods 

We performed a quantitative comparison between our automatic cell detection 

algorithm and manual cell division sub-trees. We found our approach yields overall 50% 

of detection rate with respect to manual effort. To validate our approaches we also used a 

set of 7740 images from 20 image streams each from two different experiments; E5689 

and E5677. The desired interval between frames in the LSDCAS image stream was 300 

seconds. The dataset contained a total of 22,292 objects and 2045 cells were annotated as 

undergoing division during the time-lapse capture. This corresponds to 309 trees and 425 

sub-trees.  

Using this method, we were able to automatically detect 52% the true cell division 

sub-trees with our automatic detection method. 
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Table 14. The detection rate and false positive rate results of three novel 
methodologies which developed in this research. 

 
Graph Trend Analysis Paired Graph Analysis 

Reverse Kalman Filter 

with PGA 

 
Detection 

Rate 

False 

Positive 

Rate 

Detection 

Rate 

False 

Positive 

Rate 

Detection 

Rate 

False 

Positive 

Rate 

E5689 7.01% 92.99% 29.27% 70.73% 57.5% 42.50% 

E5677 2.34% 97.66% 18.42% 81.58% 35.44% 64.56% 

Note: graph trend analysis and paired graph analysis methods only detect single cell 
events. But reverse Kalman filter with paired graph analysis method detects cell 
divisions.  
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APPENDIX 

DETAILED RESULTS BY FIELD IN EXPERIMENTS 

Graph Trend Analysis 

1. Graph trend analysis results using E5689. 

Field 
A total number of RU 

events 
(Manually detected) 

Detected RU events False positives 

0 15 0 20 

1 47 6 39 

2 23 1 28 

3 11 0 13 

4 25 1 41 

5 23 3 58 

6 22 1 28 

7 29 3 28 

8 13 4 21 

9 22 2 32 

10 23 1 20 

11 27 4 26 

12 17 0 20 

13 30 3 37 

14 16 1 13 

15 25 3 26 

16 22 2 25 

17 19 0 19 

18 31 6 39 

19 33 2 37 

Total 473 43 570 

Note: Overall detection rate is 43 / 613 = 7.01% and false positive rate is 570 / 613 = 
92.99%. 
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2. Graph Trend analysis result using E5677. 

Field 
A total number of RU 

events 
(Manually detected) 

Detected RU events False positives 

0 5 0 17 

1 13 1 14 

2 17 2 31 

3 11 1 19 

4 15 1 24 

5 4 0 5 

6 3 0 22 

7 7 0 34 

8 12 1 27 

9 12 1 34 

10 8 2 16 

11 15 1 38 

12 11 0 20 

13 15 1 32 

14 3 0 30 

15 9 1 29 

16 8 0 29 

17 8 0 23 

18 8 0 29 

19 10 0 37 

Total 194 12 500 

Note: Overall detection rate is 12 / 512 = 2.34% and false positive rate is 500 / 512 = 
97.66%. 
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3. Graph trend analysis results with various moving averages of E5677 

Field 

A total 
number of 

RU 
events 

(Manually 
detected) 

Detected RU 
by GTA 

Detected RU 
events by 
GTA with 

MA(2) 

Detected RU 
events by 
GTA with 

MA(3) 

Detected RU 
events by 
GTA with 

MA(4) 

Detected RU 
events by 
GTA with 

MA(5) 

0 5 0 1 1 0 1 

1 13 1 1 1 1 2 

2 17 2 2 3 2 0 

3 11 1 2 1 1 0 

4 15 1 0 2 0 1 

5 4 0 0 0 1 1 

6 3 0 0 0 0 0 

7 7 0 1 0 1 0 

8 12 1 0 1 1 1 

9 12 1 1 1 3 4 

10 8 2 1 1 1 1 

11 15 1 3 2 0 2 

12 11 0 1 1 0 0 

13 15 1 3 0 1 1 

14 3 0 0 0 0 0 

15 9 1 0 0 2 2 

16 8 0 0 0 0 1 

17 8 0 0 1 1 2 

18 8 0 0 2 0 1 

19 10 0 1 2 0 1 

Total 194 12 17 19 15 21 
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Paired graph analysis 

1. Paired graph analysis with various divergence threshold results using E5677. 

Field 

Correctly detected 
RU events / total 

detected RU 
events 

(1.5 S.D) 

Correctly detected 
RU events / total 

detected RU 
events 

 (1.65 S.D) 

Correctly detected 
RU events / total 

detected RU 
events 

 (1.75 S.D) 

Correctly detected 
RU events / total 

detected RU 
events 

 (2.0 S.D) 

0 5 / 35 4 / 28 4 / 25 4 / 17 

1 10/ 31 9 / 27 9 / 24 9 / 21 

2 12/ 58 12 / 50 12 / 42 12 / 32 

3 7 / 24 7 / 19 7 / 17 6 / 12 

4 10 / 57 10 / 51 10 / 43 9 / 33 

5 4 / 30 4 / 28 4 / 23 4 / 19 

6 3 / 31 3 / 28 3 / 24 3 / 14 

7 4 / 38 4 / 34 4 / 27 2 / 17 

8 11 / 42 10 / 39 9 / 32 8 / 25 

9 10 / 49 9 / 43 9 / 39 9 / 32 

10 5 / 41 5 / 35 5 / 27 3 / 20 

11 10 / 54 10 / 50 10 / 39 8 / 26 

12 7 / 41 7 / 39 7 / 34 6 / 23 

13 9 / 55 9 / 47 9 / 40 8 / 29 

14 2 / 29 1 / 21 1 / 19 1 / 11 

15 7 / 37 6 / 25 6 / 23 6 / 16 

16 5 / 33 5 / 23 5 / 21 5 / 14 

17 8 / 49 8 / 45 8 / 39 8 / 28 

18 8 / 68 8 / 61 8 / 50 7 / 31 

19 9 / 35 9 / 33 8 / 26 7 / 17 

Total 146 / 1137 140 / 726 139 / 614 121 / 437 
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2. Paired graph analysis with 1.65 S.D. divergence threshold using E5689. 

Field 
Total number of RU 

events 
(Manually detected) 

Detected RU events False positives 

0 15 12 25 

1 47 39 68 

2 23 14 34 

3 11 9 26 

4 25 21 49 

5 23 14 58 

6 22 17 40 

7 29 20 38 

8 13 10 25 

9 22 17 58 

10 23 13 32 

11 27 22 26 

12 17 12 37 

13 30 24 59 

14 16 13 51 

15 25 15 58 

16 22 18 40 

17 19 19 33 

18 31 21 58 

19 33 28 50 

Total 473 358 865 

Note: Overall detection rate is 358 / 1223 = 29.27% and false positive rate is 865 / 1223 = 
70.73%. 
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3. Paired graph analysis with 1.65 S.D. divergence threshold using E5677. 

Field 
Total number of RU 

events 
(Manually detected) 

Detected RU events False positives 

0 5 4 24 

1 13 9 18 

2 17 12 38 

3 11 7 12 

4 15 10 41 

5 4 4 25 

6 3 3 25 

7 7 4 30 

8 12 10 29 

9 12 9 34 

10 8 5 30 

11 15 10 40 

12 11 7 36 

13 15 9 45 

14 3 1 20 

15 9 6 19 

16 8 5 18 

17 8 8 46 

18 8 8 64 

19 10 9 26 

Total 194 140 620 

Note: Overall detection rate is 140 / 760 = 18.42% and false positive rate is 620 / 760 = 
81.58%. 
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Reverse Kalman filter with paired graph analysis 

1. Reverse Kalman filter with paired graph analysis results using E5689. 

Field 
Total number of 
normal division  

(Manually detected) 

Detected normal 
division False positives 

0 13 10 10 

1 24 13 18 

2 16 8 8 

3 5 5 5 

4 15 13 10 

5 13 9 5 

6 19 14 7 

7 18 10 10 

8 8 7 6 

9 20 11 9 

10 14 6 5 

11 20 12 6 

12 14 8 2 

13 19 12 9 

14 17 16 10 

15 14 9 7 

16 17 9 6 

17 18 13 4 

18 16 12 11 

19 17 10 5 

Total 317 207 153 

Note: Overall detection rate is 207 / 360 = 57.5% and false positive rate is 153 / 360 = 
42.5%. 
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2. Reverse Kalman filter with paired graph analysis results using E5677. 

Field 
Total number of 
normal division  

(Manually detected) 

Detected normal 
division False positives 

0 5 3 7 

1 7 4 3 

2 6 4 10 

3 4 2 2 

4 8 5 10 

5 3 3 4 

6 3 3 6 

7 4 3 7 

8 8 8 6 

9 9 8 10 

10 4 1 8 

11 6 5 6 

12 5 3 5 

13 4 3 10 

14 1 0 4 

15 7 4 6 

16 4 3 3 

17 6 3 9 

18 6 2 11 

19 8 6 6 

Total 108 73 133 

Note: Overall detection rate is 73 / 206 = 35.44% and false positive rate is 133 / 206 = 
64.56%. 
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